Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Lattice Inclusion Compounds of Gossypol. Structure of the 1:2 Gossypol/Salicylaldehyde Coordinatoclathrate

By M. Gdaniec
Faculty of Chemistry, A. Mickiewicz University, 60780 Poznañ, Poland

(Received 11 July 1990; accepted 3 December 1990)

[^0]form, via a pair of $\mathrm{O}(5)-\mathrm{H} \cdots \mathrm{O}(3)$ hydrogen bonds, typical centrosymmetric dimers. Two salicylaldehyde molecules, B, related by a symmetry centre, are enclosed in a cage whose four walls are formed by naphthyl rings. The guest molecules in the cage are disordered and adopt two coplanar orientations where they are hydrogen bonded to the gossypol $\mathrm{O}(1)-\mathrm{H}$ hydroxyl group. Gossypol and salicylaldehyde molecule B form a layer analogous to that observed in the gossypol/benzaldehyde 2:3 inclusion compound [Gdaniec, Ibragimov \& Talipov (1991), Acta Cryst. C47, 573-577]. The salicylaldehyde molecules A are accommodated in channels formed between the nearest layers related by the n-glide plane. In these channels they are hydrogen bonded to the gossypol $\mathrm{O}(8)-\mathrm{H}$ hydroxyl group.

Introduction. Gossypol [1, $1^{\prime}, 6,6^{\prime}, 7,7^{\prime}$-hexahydroxy-5,5'-diisopropyl-3, 3^{\prime}-dimethyl(2, 2^{\prime}-binaphthalene)-
$8,8^{\prime}$-dicarboxaldehyde] shows remarkable inclusion ability towards a number of chemically different guest substrates (Ibragimov, Talipov, Dadabaev, Nazarov \& Aripov, 1988). The structure is easily rearranged to accommodate guests of proper shape, size and chemical nature. Sometimes, a change of crystallization conditions can lead to different inclusion compounds of gossypol with the same guest species. For example, crystallization of gossypol from salicyladehyde gives triclinic crystals, $a=13.838$ (3), $b=14.874$ (3), $c=18.403$ (2) $\AA, \alpha=$ $66 \cdot 60(1), \quad \beta=109 \cdot 12(1), \quad \gamma=109 \cdot 63$ (2) ${ }^{\circ}, \quad V=$ $3189 \AA^{3}, \quad Z=4, \quad D_{x}=1.33 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad$ host:guest molecular ratio $1: 1$. When gossypol is crystallized from salicylaldehyde/benzene mixture, monoclinic crystals with host:guest molecular ratio of 1:2 are formed. In both cases, two new forms of gossypol inclusion compounds are obtained. The crystal structure of 1:2 gossypol/salicylaldehyde presented in this paper is closely related to the $2: 3$ gossypol/benzaldehyde coordinatoclathrate (Gdaniec, Ibragimov \& Talipov, 1991).

Experimental. Gossypol was obtained from the Institute of Bioorganic Chemistry, Tashkent, USSR. Pale-yellow elongated plates crystallized when benzene was diffused into salicylaldehyde/benzene mixture containing gossypol. Unit-cell parameters were determined on a Syntex $P 2_{1}$ diffractometer by a least squares fitting of the setting angles of 15 reflections within 2θ range $19-23^{\circ}$. Diffraction data were collected from a crystal of dimensions $0.5 \times 0.3 \times$ 0.2 mm in the $\theta-2 \theta$ mode to a maximum 2θ value of 115° using $\mathrm{Cu} K \alpha$ radiation with a graphite monochromator ($h: 0 \rightarrow 11 ; k: 0 \rightarrow 32 ; l:-12 \rightarrow 12$). Two standard reflections were monitored every 100 intensity measurements; maximum variation of their intensity was $3 \cdot 5 \%$. Final data set consisted of 5647
unique reflections ($R_{\mathrm{int}}=0.025$) of which 3541 had I $>1.5 \sigma(I)$ and were considered observed. No corrections for extinction or absorption were used. The structure was solved with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). All atoms of the host with the exception of isopropyl methyl groups were located on the 'best' E map. These methyl groups and the guest molecules were found from subsequent ΔF maps. One of the salicylaldehyde molecules is disordered. It adopts two different coplanar orientations in the crystal with occupancy factor 0.657 (6) for orientation B and 0.343 (6) for orientation B^{\prime}. The structure was refined by full-matrix least-squares methods with the program SHELX 76 (Sheldrick, 1976). Positional and anisotropic thermal parameters of non-H atoms of the host and of the salicylaldehyde A molecule and positional and isotropic thermal parameters of non- H atoms of salicylaldehyde B and B^{\prime} were refined. The H atoms of the guest B and B^{\prime} were not determined. The H atoms attached to the O atoms and those of the methyl groups $\mathrm{C}(21)$ and $\mathrm{C}(26)$ were found from ΔF maps. The remaining H atoms were placed in idealized positions, assuming $\mathrm{C}-\mathrm{H}$ distance of $1.08 \AA$. The positional parameters of the H atoms located from the ΔF maps and isotropic thermal parameters of all H atoms were included in the refinement. An empirical extinction parameter x was applied to correct F_{c} according to $F_{c}{ }^{\prime}=F_{c}\left(1-x F_{c}{ }^{2} /\right.$ $\sin \theta) ; x$ converged at $59(5) \times 10^{-5}$. Weights were assigned as $w=1 /\left[\sigma^{2}(F)+0.0001 F^{2}\right]$ and the quantity minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$. The refinement converged to give final residuals $R=0.059$ and $w R=$ 0.065 . The max. Δ / σ value in the final cycle of refinement was $0 \cdot 1$, final $\Delta \rho$ max. and min. were 0.33 and $-0.21 \mathrm{e}^{-3}$, respectively. Atomic scattering factors were those incorporated in SHELX76 (Sheldrick, 1976). The atomic parameters are given in Table 1.* An XT IBM PC computer was used to carry out all crystallographic calculations.

Discussion. An ORTEP (Johnson, 1976) representation of the complex with atom labelling is shown in Fig. 1. The gossypol molecule is in the aldehyde form (Kamaev, Baram, Ismailov, Leontev \& Sadykov, 1979; Reyes, Wyrick, Borriero \& Benas, 1986). Bond lengths and bond angles of the two halves of the gossypol molecule agree within 3σ with the exception of four angles which are within 5σ. They are also in good agreement with the values found in

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{C}(1)$	0.2540 (3)	0.9524 (1)	-0.0111 (3)	0.049 (1)
C(2)	0.2357 (3)	0.9064 (1)	0.0037 (3)	0.048 (1)
C(3)	0.2969 (3)	0.8756 (1)	-0.0584 (3)	0.061 (1)
C(4)	0.3709 (3)	0.8915 (1)	-0.1344 (3)	0.062 (1)
C(5)	0.4729 (3)	0.9531 (1)	-0.2283 (3)	0.055 (1)
C(6)	0.5015 (3)	0.9980 (1)	-0.2283 (3)	0.056 (1)
C (7)	0.4487 (3)	1.0297 (1)	-0.1607 (3)	0.053 (1)
C(8)	0.3620 (3)	1.0172 (1)	-0.0926 (3)	0.047 (1)
$\mathrm{C}(9)$	$0 \cdot 3342$ (3)	0.9700 (1)	-0.0842 (3)	0.044 (1)
$\mathrm{C}(10)$	0.3914 (3)	0.9383 (1)	-0.1498 (3)	0.050 (1)
C(21)	0.2835 (7)	0.8249 (2)	-0.0395 (7)	0.113 (2)
$\mathrm{C}(22)$	$0 \cdot 3094$ (4)	1.0537 (1)	-0.0359 (4)	0.068 (1)
C(23)	0.5262 (4)	0.9195 (1)	-0.3064 (3)	0.067 (1)
C(24)	0.5117 (5)	0.9349 (2)	-0.4329 (4)	0.095 (2)
C(25)	0.6586 (4)	0.9087 (2)	-0.2609 (4)	0.085 (2)
$\mathrm{O}(1)$	$0 \cdot 1939$ (3)	0.9833 (1)	0.0468 (2)	0.069 (1)
$\mathrm{O}(2)$	0.3409 (3)	1.0945 (1)	-0.0415 (3)	0.074 (1)
$\mathrm{O}(3)$	0.4851 (2)	1.0728 (1)	-0.1699 (3)	0.070 (1)
O(4)	0.5845 (3)	1.0140 (1)	-0.2949 (3)	0.076 (1)
$\mathrm{C}(11)$	0.1937 (3)	0.8764 (1)	0.1932 (3)	0.050 (1)
$\mathrm{C}(12)$	0.1498 (3)	0.8898 (1)	0.0810 (3)	0.046 (1)
$\mathrm{C}(13)$	0.0252 (3)	0.8850 (1)	0.0406 (3)	0.051 (1)
C(14)	-0.0508 (3)	0.8670 (1)	0.1117 (3)	0.051 (1)
C(15)	-0.0896 (3)	0.8322 (1)	0.2958 (3)	0.049 (1)
C(16)	-0.0433 (3)	0.8185 (1)	0.4040 (3)	0.054 (1)
$\mathrm{C}(17)$	0.0810 (3)	0.8236 (1)	0.4486 (3)	0.055 (1)
$\mathrm{C}(18)$	0.1643 (3)	0.8416 (1)	0.3836 (3)	0.054 (1)
C(19)	$0 \cdot 1197$ (3)	0.8568 (1)	0.2683 (3)	0.046 (1)
$\mathrm{C}(20)$	-0.0066 (3)	0.8522 (1)	0.2259 (3)	0.044 (1)
C(26)	-0.0248 (4)	0.8981 (2)	-0.0810 (4)	0.072 (1)
$\mathrm{C}(27)$	0.2896 (4)	0.8418 (2)	0.4369 (4)	0.080 (1)
C(28)	-0.2233 (3)	0.8244 (1)	0.2507 (3)	0.059 (1)
C(29)	-0.3098 (4)	0.8474 (2)	0.3220 (4)	0.082 (2)
C(30)	-0.2518 (4)	0.7737 (1)	0.2378 (4)	0.080 (1)
O(5)	$0 \cdot 3153$ (2)	0.8824 (1)	0.2345 (2)	0.067 (1)
O(6)	0.3237 (3)	0.8287 (1)	0.5378 (3)	0.088 (1)
O(7)	0.1120 (3)	0.8088 (1)	0.5581 (2)	0.074 (1)
$\mathrm{O}(8)$	-0.1165 (3)	0.7984 (1)	0.4735 (3)	0.077 (1)
$\mathrm{O}(1 A)$	0.0902 (3)	$0 \cdot 2406$ (1)	$0 \cdot 3065$ (3)	0.100 (1)
$\mathrm{O}(2 A)$	-0.0186 (3)	$0 \cdot 2401$ (1)	0.0937 (3)	0.108 (1)
$\mathrm{C}(1 A)$	$0 \cdot 1918$ (4)	0.2256 (1)	0.1438 (3)	0.059 (1)
$\mathrm{C}(2 A)$	$0 \cdot 1931$ (4)	0.2311 (1)	0.2621 (4)	0.067 (1)
$\mathrm{C}(3 A)$	$0 \cdot 3008$ (4)	0.2268 (2)	0.3364 (4)	0.079 (1)
$\mathrm{C}(4 A)$	$0 \cdot 4058$ (4)	0.2171 (2)	0.2930 (5)	0.088 (2)
$\mathrm{C}(5 A)$	$0 \cdot 4061$ (5)	0.2125 (2)	$0 \cdot 1762$ (5)	0.094 (2)
$\mathrm{C}(68)$	$0 \cdot 2991$ (5)	0.2162 (1)	$0 \cdot 1018$ (4)	0.082 (1)
$\mathrm{C}(7 A)$	0.0799 (5)	0.2306 (2)	0.0651 (4)	0.082 (2)
$\mathrm{C}(18)$	0.4460 (8)	0.4529 (2)	0.0804 (7)	0.057 (2)*
C(2B)	0.5760 (7)	0.4414 (2)	0.0830 (6)	0.061 (2)*
C(3B)	0.6320 (11)	0.4307 (4)	-0.0058 (11)	0.120 (5)*
$\mathrm{C}(4 B)$	0.5350 (12)	0.4216 (3)	-0.1017 (9)	0.072 (3)**
$\mathrm{C}(5 B)$	0.4107 (15)	0.4296 (6)	-0.1151 (16)	0.124 (7)*
$\mathrm{C}(68)$	0.3774 (12)	0.4461 (3)	-0.0071 (14)	0.114 (5)*
$\mathrm{C}(7 B)$	0.3933 (08)	0.4694 (3)	0.1815 (9)	0.106 (3)**
$\mathrm{O}(1 B)$	0.6497 (5)	0.4517 (2)	0.1829 (4)	0.103 (2)**
$\mathrm{O}(2 B)$	0.4671 (6)	0.4763 (2)	0.2791 (5)	0.090 (2)**
$\mathrm{C}\left(1 B^{\prime}\right)$	0.5037 (16)	0.4520 (4)	0.1009 (11)	0.052 (4)*
$\mathrm{C}\left(2 B^{\prime}\right)$	0.3465 (22)	0.4540 (7)	0.0275 (19)	0.102 (7)*
$\mathrm{C}\left(3 B^{\prime}\right)$	0.3434 (14)	0.4406 (5)	-0.0770 (15)	0.077 (5)*
$\mathrm{C}\left(4 B^{\prime}\right)$	0.4375 (28)	0.4235 (8)	-0.1257 (21)	0.077 (8)*
$\mathrm{C}\left(5 B^{\prime}\right)$	0.5630 (41)	0.4182 (14)	-0.1070 (37)	0.200 (23)*
$\mathrm{C}\left(6 B^{\prime}\right)$	0.5873 (18)	0.4278 (6)	-0.0080 (17)	0.075 (6)*
$\mathrm{C}\left(7 B^{\prime}\right)$	0.5196 (15)	0.4651 (5)	$0 \cdot 2144$ (15)	0.101 (5)*
$\mathrm{O}\left(1 B^{\prime}\right)$	0.2779 (11)	0.4653 (4)	0.0835 (10)	0.119 (4)*
$\mathrm{O}\left(2 B^{\prime}\right)$	$0 \cdot 4105$ (10)	0.4782 (3)	0.2557 (9)	0.066 (3)*

* Isotropic temperature factor.

other gossypol inclusion compounds (Changfu, Cunheng, Guanghong \& Shantian, 1982; Gdaniec, Imbragimov \& Talipov, 1991; Gdaniec, Ibragimov \& Talipov, 1990; Ibragimov, Gdaniec \& Dadabaev, 1990; Ibragimov, Talipov, Aripov \& Sadykov, 1990). The two naphthyl moieties are nearly perpendicular, the dihedral angle between their least-squares planes

Table 2. Geometry of hydrogen bonds

$D-{ } \cdots$	$D \because A$ (\AA)	$D-\mathrm{H}$ (\AA	$\begin{gathered} \left.\mathrm{H}_{(\AA)} \mathrm{A}\right) \end{gathered}$	$\underset{\left({ }^{\circ}\right)}{D-{ }_{c} \cdots A}$
(a) Intramolecular hydrogen bonds				
$\mathrm{O}(3)-\mathrm{H}(30) \cdots \mathrm{O}(2)$	2.444 (5)	0.97 (6)	1.53 (6)	153 (5)
$\mathrm{O}(7)-\mathrm{H}(70) \cdots \mathrm{O}(6)$	2.474 (5)	0.97 (6)	1.58 (6)	153 (5)
$\mathrm{O}(4)-\mathrm{H}(40) \cdots \mathrm{O}(3)$	2.622 (5)	$0 \cdot 90$ (6)	2.01 (6)	123 (5)
$\mathrm{O}(8)-\mathrm{H}(80) \cdots \mathrm{O}(7)$	2.609 (5)	0.95 (5)	$2 \cdot 12$ (6)	111 (4)
$\mathrm{O}(1 A)-\mathrm{H}(1 A) \cdots \mathrm{O}(2 A)$	$2 \cdot 612$ (5)	1.02 (6)	1.70 (7)	147 (6)
(b) Intermolecular hydrogen bonds				
$\mathrm{O}(5)-\mathrm{H}(50) \cdots \mathrm{O}\left(3^{\prime}\right)$	2.785 (4)	0.92 (6)	1.97 (6)	146 (5)
$\mathrm{O}(4)-\mathrm{H}(40) \cdots \mathrm{O}\left(5^{\prime}\right)$	$3 \cdot 299$ (4)	$0 \cdot 90$ (6)	2.46 (6)	154 (5)
$\mathrm{O}(1)-\mathrm{H}(10) \cdots \mathrm{O}\left(2 B^{\prime \prime}\right)$	2.918 (13)	0.87 (5)	2.13 (6)	151 (5)
$\mathrm{O}(1)-\mathrm{H}(10) \cdots \mathrm{O}\left(2 B^{\prime \prime}\right)$	2.747 (13)	0.87 (5)	2.01 (6)	143 (5)
$\mathrm{O}(8)-\mathrm{H}(80) \cdots \mathrm{O}\left(1 A^{\text {"'I }}\right.$)	2.805 (5)	0.95 (5)	1.99 (5)	143 (5)

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $0.5-x, 0.5+y, 0.5-z$; (iii) $-x$, $1-y, 1-z$.

Fig. 1. Atom-numbering scheme.
being $87.6(3)^{\circ}$. The ring $\mathrm{C}(11)-\mathrm{C}(20)$ is more planar $\left(\chi^{2}=112\right.$, max. dev. $\left.=0.015 \AA\right)$ than the ring $\mathrm{C}(1)-$ $\mathrm{C}(10)\left(x^{2}=2378\right.$, max. dev. $\left.=0.088 \AA\right)$. The geometries of the four intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) are close to those observed for gossypol in other inclusion compounds. The intramolecular hydrogen bond in salicylaldehyde A has a donor-acceptor distance more than $0 \cdot 1 \AA$ longer than the analogous $\mathrm{O}(3)-\mathrm{H}(30) \cdots \mathrm{O}(2)$ and $\mathrm{O}(7)-$ $\mathrm{H}(70) \cdots \mathrm{O}(6)$ hydrogen bonds in gossypol.

The hydroxyl group $\mathrm{O}(5)-\mathrm{H}(50)$ acts as a hydrogen donor to $\mathrm{O}\left(3^{i}\right)$ of the molecule related by the inversion centre and a typical gossypol dimer is formed. The dimer is further stabilized by a weak $\mathrm{O}(4)-\mathrm{H}(40) \cdots \mathrm{O}\left(5^{\mathrm{i}}\right)$ interaction. As in the gossypol/ benzaldehyde inclusion compound (Gdaniec, Imbragimov \& Talipov, 1991), the dimers are the
only hydrogen-bond associates of the host in the structure. The hydroxyl groups $\mathrm{O}(1)-\mathrm{H}(10)$ and $\mathrm{O}(8)-\mathrm{H}(80)$ are involved, as donors, in hydrogenbond interactions with salicylaldehyde molecules. The hydroxyl group of the guest A interacts with the $\mathrm{O}(8)-\mathrm{H}(8)$ of gossypol. The second guest was found in the crystal structure in two coplanar orientations, B and B^{\prime}, with occupancy factors 0.657 (6) and 0.343 (6), respectively. It is hydrogen bonded (in both orientations) through the aldehyde group to the gossypol $\mathrm{O}(1)-\mathrm{H}(10)$. The hydrogen bond of salicylaldehyde in the orientation with the lower occupation factor (B^{\prime}) has a donor-acceptor distance $0.17 \AA$ shorter than that of the guest in the alternative orientation.

In 1:2 gossypol/salicylaldehyde and 2:3 gossypol/ benzaldehyde there is a common packing motif of the host-guest elements. The gossypol dimers and the guest B molecules pack into layers parallel to (010). The structure of the layer for gossypol/ salicylaldehyde is shown in Fig. 2. The guest molecules B are accommodated in centrosymmetric cages. The two rings, $\mathrm{C}(1)-\mathrm{C}(10)$ and $\mathrm{C}(11)-\mathrm{C}(20)$, which form lipophilic walls of the cage are at a distance of 11.41 and $10.36 \AA$, respectively, in the salicylaldehyde complex and 11.92 and $10.26 \AA$, respectively, in the benzaldehyde complex. The phenyl rings of the guests located in this cage are nearly parallel to the gossypol $\mathrm{C}(11)-\mathrm{C}(20)$ moiety. The distance and dihedral angle between the gossypol $\mathrm{C}(11)-\mathrm{C}(20)$ plane and the guest $\mathrm{C}(1 B)-\mathrm{C}(6 B)$ best plane is $3.47 \AA$ and 5.3°, respectively, in the salicylaldehyde complex and $3.40 \AA$ and $2 \cdot 5^{\circ}$, respectively, in the benzaldehyde complex.

While the construction of the layers is similar in both inclusion compounds, in gossypol/salicylaldehyde the guest molecule enclosed in the cage is disordered. In orientation B the line $\mathrm{O}(1 B) \cdots \mathrm{O}(2 B)$ is nearly parallel to the gossypol $\mathrm{C}(1)-\mathrm{C}(10)$ ring and $\mathrm{H}(1 B)$ (not localized owing to the disorder), which

Fig. 2. Structure of the host-guest B layer in gossypol/salicylaldehyde 1:2 viewed along [010].
takes part in the intramolecular hydrogen bond, can interact with π electrons of this naphthyl ring. In orientation B^{\prime} the line $\mathrm{O}\left(1 B^{\prime}\right) \cdots \mathrm{O}\left(2 B^{\prime}\right)$ is nearly perpendicular to the $\mathrm{C}(1)-\mathrm{C}(10)$ ring; however, in this orientation the hydrogen bond between the host and the guest is stronger than in orientation B. The actual occupancy of these two orientations is probably a result of the interplay between the stabilizing effect of these two interactions.
These layers are building blocks of the structure. However, they are not able to form a close-packed structure. The packing diagrams of 1:2 gossypol/ salicylaldehyde and 2:3 gossypol/benzaldehyde are compared in Fig. 3. In gossypol/benzaldehyde, close packing is achieved by enclosing additional guest

Fig. 3. Comparison of the crystal packing viewed along [101] of (a) gossypol/benzaldehyde 2:3 and (b) gossypol/salicylaldehyde 1:2 (PLUTO, Motherwell \& Clegg, 1978). Two layers built by gossypol and guest b are shown in each case. The O atoms are marked with circles. H atoms have been omitted for clarity. Hydrogen bonds are drawn with dashed lines.
molecules in cages formed between the two nearest layers related by translation along b. These guest molecules show four different coplanar orientations in the cage in which they are hydrogen bonded to the host $\mathrm{O}(8)-\mathrm{H}(80)$ hydroxyl. In gossypol/salicylaldehyde, channels accommodating guest molecules A are formed between the two nearest layers related by an n-glide plane. The guest molecules located in the channels are hydrogen bonded to the host $\mathrm{O}(8)$ $\mathrm{H}(80)$. The best plane $\mathrm{C}(1 A)-\mathrm{C}(6 A)$ forms a dihedral angle of 15.7° with the naphthyl moiety $\mathrm{C}(11)-\mathrm{C}(20)$, and the local stacks consisting of six aromatic rings can be distinguished in this structure.
The inclusion compounds of gossypol with benzaldehyde and salicylaldehyde are examples of inclusion compounds with guest:host ratio exceeding 1. In this case one of the solvent molecules and gossypol are used to build 'an inclusion aggregate' (a layer), stabilized by hydrogen bonds and stacking interactions, with the solvent molecule enclosed within a cage formed by gossypol molecules. However, because these aggregates are not able to form a close-packed crystal, an additional solvent molecule is included on crystallization. In this case the inclusion aggregate plays the role of host. It can be expected that a lattice inclusion compound with a structure similar to gossypol/benzaldehyde or gossypol/salicylaldehyde can be obtained with two different guest species: guest A will be accommodated in voids formed between the inclusion aggregates of gossypol and guest B.

The author wishes to thank Professor Z . Kosturkiewicz for helpful discussions and interest in her work and the MEN project PR.II.13.2.13 for financial support.

References

Changfu, H., Cunheng, B., Guanghong, B. \& Shantian, M. (1982). Sci. Sin. B25, 1194-1 200.

Gdaniec, M., Ibragimov, B. T. \& Talipov, S. A. (1990). J. Inclusion Phenom. 8, 431-438.
Gdaniec, M., Ibragimov, B. T. \& Talipov, S. A. (1991). Acta Cryst. C47, 573-577.
Ibragimov, B. T., Gdaniec, M. \& Dadabaev, B. N. (1990). J. Inclusion Phenom. 8, 333-348.
Ibragimov, B. T., Talipov, S. A., Aripov, T. F. \& Sadykov, A. S. (1990). J. Inclusion Phenom. 8, 323-331.

Ibragimov, B. T., Talipov, S. A., Dadabaev, B. N., Nazarov, G. B. \& Aripov, T. F. (1988). Khimiya p-rir. soedin. pp. 675-679.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kamaev, F. G., Baram, N. I., Ismailov, A. I., Leontev, V.B. \& Sadykov, S. A. (1979). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1003-1010.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M.M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Reyes, J., Wyrick, S. D., Borriero, L. \& Benas, D. J. (1986). Biochem. Biophys. Acta, 863, 101-109.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 1503-1506

Structure of D-glycero-L-galacto-Heptitol

By Jürgen Kopf*
Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-W2000 Hamburg 13, Germany
Peter Köll
Department of Chemistry, Organic Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-W2900 Oldenburg, Germany
and Stephen J. Angyal
School of Chemistry, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia

(Received 23 October 1990; accepted 4 December 1990)

$$
\begin{aligned}
& \text { Abstract. } \mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{7}, M_{r}=212 \cdot 20, \text { monoclinic, } P 2_{1}, a \\
& =4.748(3), \quad b=8.362(6), \quad c=11.428(7) \AA, \quad \beta= \\
& \text { *Author for correspondence. } \\
& 0108-2701 / 91 / 071503-04803.00
\end{aligned}
$$

$92.01(3)^{\circ}, \quad V=453.4(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.554 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{1}\right)=1.54051 \AA, \quad \mu=$ $11.7 \mathrm{~cm}^{-1}, F(000)=228, T=293 \mathrm{~K}$, final $R=0.049$ for 993 unique observed data. The molecules adopt a

[^0]: Abstract. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}, M_{r}=762 \cdot 81$, monoclinic, $P 2_{1} / n, \quad a=11 \cdot 130(2), \quad b=29 \cdot 542$ (5), $\quad c=$ 11.744 (2) $\AA, \beta=98.45$ (1) ${ }^{\circ}, V=3820$ (1) $\AA^{3}, Z=4$,
 $D_{x}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu(\mathrm{Cu} K \alpha)=8.09 \mathrm{~cm}^{-1}, \quad \lambda=$ $1.51478 \AA, F(000)=1608, T=293 \mathrm{~K}, R=0.059$ for 3541 observed reflections. The gossypol molecules

[^1]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and bond angles, least-squares-planes data and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53804 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

